Simultaneous Detection of P300 and Steady-State Visually Evoked Potentials for Hybrid Brain-Computer Interface
نویسندگان
چکیده
OBJECTIVE We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. APPROACH We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. MAIN RESULTS Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.
منابع مشابه
Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملEEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme
Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybr...
متن کاملHybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination w...
متن کاملP300 Brain-Computer Interface Performance: A dry electrode study
Most brain-computer interfaces (BCI) are based on one of three types of electroencephalogram (EEG) signals: P300s, steady-state visually evoked potentials (SSVEP), and event-related desynchronization (ERD). EEG is typically recorded non-invasively using active or passive electrodes mounted on the human scalp. The common setup requires conductive electrode gel to get the best entrance impedance ...
متن کامل